
JOURNAL OF AEROSPACE COMPUTING, INFORMATION, AND COMMUNICATION
Vol. 4, December 2007

A Modular, Hybrid System Architecture for Autonomous,
Urban Driving

Dave Wooden∗, Matt Powers†, Magnus Egerstedt‡, Henrik Christensen§, and Tucker Balch¶

Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332

DOI: 10.2514/1.33349

Autonomous navigation in urban environments inevitably leads to having to switch
between various, sometimes conflicting control tasks. Sting Racing, a collaboration between
Georgia Tech and SAIC, has developed a modular control architecture for this purpose and
this paper describes the operation and definition of this architecture through so-called nested
hybrid automata. We show how to map the requirements associated with the DARPA Urban
Grand Challenge onto these nested automata and illustrate their operation through a number
of experimental results.

Nomenclature
HA hybrid automaton
Q set of discrete states
X continuous state space
E set of triggering events
U input space
f continuous dynamics
G guard conditions
R transition resets
q0, x0 initial conditions

I. Introduction

IN this paper we describe Sting Racing’s design and implementation of an unmanned system for entry into the
DARPA Urban Challenge. In particular, the focus of this paper is on the system architecture and we present

an extensively field tested architecture that is based on a modular structure comprised of so-called Nested Hybrid
Automata (NHA).

The vehicle that we use for this is a Porsche Cayenne (as shown in Fig. 1), retrofitted for complete computer
control, and use a combination of GPS/IMU, camera, radar and LADAR data to generate situational awareness,
which is, arguably, the major challenge separating the Urban Grand Challenge 07 from the previous two Grand
Challenges.1,2

Situational awareness constitutes one of the main sources of increased difficulty from Grand Challenge
05 to the Urban Grand Challenge 07, which can be understood as the ability to operate in multiple complex

Received 10 July 2007; revision received 9 October 2007; accepted for publication 17 October 2007. Copyright © 2007 by
the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal
or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 1542-9423/07 $10.00 in correspondence with the CCC.∗Research Scientist, RIM, Georgia Institute of Technology, Email: wooden@ece.gatech.edu
†Research Scientist, RIM, Georgia Institute of Technology, Email: mpowers@cc.gatech.edu
‡Associate Professor, RIM, Georgia Institute of Technology, Email: magnus@ece.gatech.edu
§Professor, RIM, Georgia Institute of Technology, Email: hic@cc.gatech.edu
¶Associate Professor, RIM, Georgia Institute of Technology, Email: tucker.balch@cc.gatech.edu

1047

WOODEN ET AL.

Fig. 1 The Sting Racing retrofitted Porsche Cayenne entry to the DARPA Urban Challenge.

scenarios—from driving on multi-lane roads, to navigating intersections while obeying precedence rules, to overtak-
ing stopped vehicles. In this paper, we argue that the standard, hybrid architecture in which a behavior-based reactive
layer controls actuation, while deliberative path planning provides intermediate waypoints in the configuration space,
fails to cover the capabilities required by the Urban Grand Challenge. Instead, what is required is a system capable
of switching both control strategy and sensing priorities based on the perceived state of the robot. For example, the
derived perception needs and appropriate control regimes of a robot at an intersection differ greatly from that of one
driving at high speeds on a highway.

In this paper we describe an extension of hybrid automata models3 for the purpose of situational awareness, and
include a description of the installation of this approach to Sting Racing’s Urban Grand Challenge robot. The overall
arrangement of the control architecture will be divided into a planning block and a control block. At the highest
level in the control block is an arbiter which combines the outputs of a multitude of behaviors. We chose to let the
arbiter vote on the control output (desired steering angle and desired translational velocity) in the fashion based on
the DAMN architecture.4 Each behavior’s output is assigned a weight by the arbiter before all outputs are combined
and the steering and velocity command are executed. These weights are prescribed by the arbiter based on its current
action, and the current action is an output of the planning block, as shown in Fig. 2.

To summarize: The contribution of this paper is the Sting Racing modular architecture, as well as a detailed
description of how it is used for solving the Urban Challenge. It should be noted already at this point, however, that

Fig. 2 Sting Racing software architecture.

1048

WOODEN ET AL.

the idea of associating controllers with states in state machines, and transitions between states with environmental
conditions, is certainly not new. For example, this idea has been pursued in the context of robot navigation,5,6 and
has been further developed as part of the behavior-based paradigm.7 What is novel in this paper is instead the nested
nature of the solution, in which each state corresponds to its own state machine. Not until the lowest level in the
hierarchy do the states correspond to actual controllers. Moreover, a number of experimental test results are given,
illustrating how the requirements for urban driving can be mapped onto a finite set of distinct modes-of-operation in
this manner.

II. Coverage of the Required Capabilities
A. The Urban Grand Challenge

The two previous grand challenges organized by DARPA emphasized autonomy and robust operation in cross-
country off-road environments.1,2 The environment was largely assumed to be static, with few or no moving objects.
If other vehicles were encountered, one of them would be paused while the other vehicle continued its route towards
the goal. The desired route to be followed was defined by a relatively dense list of waypoints rather than by perceptual
features (i.e., roads) in the environment. The objectives of the previous challenges therefore focused on endurance,
robustness to local sensory dropouts, and trajectory following within a corridor defined by waypoints, with local
deviations to accommodate static obstacles. As witnessed by the number of finishers in the last Grand Challenge, the
lower level sensing, control, and vehicle reliability required to drive between waypoints while avoiding sparse static
obstacles are now largely solved problems.1,2,8

The Urban Challenge (UC) poses a number of very different higher-level cognition challenges for the design of a
system. First of all, navigation must be performed with respect to locally defined structures such as lane-markings,
stop lines, etc. Driving is required to perform lane keeping in situations with widely spaced waypoints. The vehicle
is required to come to a stop at a stop line. Navigation must be performed relative to these markings, not with respect
to global coordinate frames as defined by GPS. In addition, global position estimation methods such as GPS might
have limited availability. In short, instead of being told where it is relative to a detailed path to follow, the vehicle
must reason as to its location and the associated appropriate control responses.

In contrast to earlier Grand Challenges, the vehicle is required to show situational awareness of dynamic as well
as stationary vehicles and structures within changing areas around the vehicle. Situational awareness is required to
allow the vehicle to plan its actions in response to the context. For example, if a slow moving vehicle is in front of
the car, and the lane marking is a double yellow line, then following at an appropriate distance is the correct action.
But the same situation with a slow moving vehicle alone in a lane with dashed lane dividers might allow an overtake
maneuver, provided there are no vehicles in front and there are no oncoming vehicles with the segment needed for
passage. For the overtake maneuver, there is a need for long-range detection of vehicles in other lanes to ensure safe
passage. At intersections there is a need to detect vehicles that are waiting or approaching, which calls for long-range
lateral coverage.

Our architecture to address these challenges is based upon the assumption that the required capabilities can
be broken down into a small (enumerable) number of operating modes, each mode consists of a collection of
parameterized behaviors and a behavior arbitration mechanism. This modularization makes design and development
tractable, as well as provides a mechanism for structured, incremental testing. Traffic laws and conventions structure
the world dynamics into this small set, though robust behavior within an operating mode requires being robust with
respect to a large variety of possibilities relevant to that mode.

B. Driving in Urban Environments
The novel, modular architecture employed by Team Sting was arrived at by observing that the sensing, planning,

and control capabilities needed to drive down a road are fundamentally different than those needed to park the vehicle.
As such, rather than choosing a single, sense-plan-act solution in which a unified planner produces references for
a trajectory tracker, a number of distinctly different environments were identified, based on the unique challenges
posed by the Urban Grand Challenge. In fact, the operation of the system is modeled as a finite set of "modes of
operation" that each capture a nominal situation to be handled by the vehicle. Within each of these modes of operation,
a dedicated set of controllers is used to handle both the nominal situation and unexpected variations.

1049

WOODEN ET AL.

Fig. 3 Modes of operation modeled as a Nested Hybrid Automaton.

Each mode of operation is represented as a hybrid automaton, as seen in Fig. 3. An automaton is composed of
states and transitions among the states. For example, consider a state Follow-Lanes which represents the behavior
of driving along lanes on a road while obeying speed limits and recognizing the speed of nearby traffic. This state
would have transitions to another state, Handle-Intersection, where the transition occurs based on a combination of
the distance from the robot to the stop point (from GPS information) and other visual cues, such as the detection of
a stop line.

The transitions between modes are guarded in the sense that environmental conditions trigger the transitions.
As such, the situational awareness component of the novel Team Sting architecture can be thought of as the guard
conditions (or transition conditions associated with the different edges in Fig. 3), and the cognition component
is encoded by the underlying state machine dynamics. And, for the sake of easy reference, each of the modes of
operation are roughly described. A more detailed description is given to the Follow Lanes mode of operation. The
remaining modes are discussed only cursively.

Follow Lanes
In the right figure of Fig. 3, the Follow Lanes mode of operation is given. Here, each node corresponds to a

particular set of behavioral controllers as well as to a particular arbitration mechanism. In fact, the modes that make
up this high-level mode are

• Follow Lane: This mode corresponds to a set of behaviors that use visual perception to track lane striping and
that use fused LIDAR and radar data to track nearby traffic, thereby adjusting speed and avoiding collisions.

• Overtake: Typically, transitions between the states are based on environmental or perceptual information.
Overtake mode, however, is a state-based signal to switch from the larger Follow-Lanes model into the
Overtake-Static-Obstacle model. This mode corresponds to a command to the behavior arbiter to stand still
until the Overtake-Static-Obstacle model is enabled.

• Blocked: This mode uses the same behavior arbiter as the Follow-Lane mode. However, it has a transition
based primarily on time. If this mode is active for a parameterized amount of time, it transitions to Overtake,
which then signals the robot to overtake a static obstacle.

• Blind: This mode corresponds to a behavior arbiter that uses GPS and laser information to drive in the lane
because the lane detector has failed in some way. Fused laser and radar data is used to avoid collisions and
maintain speed in the lane.

Overtake Static Obstacle
This mode of operation governs the control of the vehicle during a maneuver to overtake a static obstacle.

The four modes comprising this high-level mode include the following: Init-State, Change-Left, Change-Right,

1050

WOODEN ET AL.

and Done. Init-State establishes a fixed coordinate frame to govern the transitions through the subsequent modes.
Change-Left and Change-Right correspond to the tracking of lane markings one lane to the left or right, respec-
tively of the current lane being tracked. That is, the lane change maneuver is achieved primarily by shifting visual
perceptual attention on the road. The lane change commands are triggered based on a combination of distance trav-
eled (relative to the coordinate frame established in Init-State) and the presence/absence of obstacles from fused
LIDAR/radar data.

U-Turn
The states of this high-level mode encode a mapping from vehicle orientation (i.e., position and heading) to

output primitive (e.g., drive forward, hard left; drive in reverse, hard right). This mapping stabilizes the vehicle (in
the presence of imperfect vehicle control) to the desired final position and heading.

Handle Intersection
Intersections are handled by cycling through a string of simple modes: Approach, Find Queue Position, Wait For

Turn, Go, and Done. Approach smoothly brings the vehicle to a stop at the stop line based on visual perception of
the lane markings, while queueing behind other vehicles. Once stopped, Find Queue Position establishes the robot’s
precedence order based on fused LIDAR/radar data. Wait For Turn checks the interior of the intersection for traversals
by the adjacent vehicles with higher precedence. Once its turn has come, Go is triggered, and the robot traverses a
path through the intersection towards the entry point back onto the lane segment.

Park and Unpark
This pair of high-level modes guides the robot through RNDF zones and in and out of parking spots. These states

govern the path of the robot (e.g., to drive it to a parking spot) given the constraints of Ackermann steering and
encode the rules of driving in the unstructured RNDF zones (e.g., pass to the right of oncoming traffic).

III. A Modular, Hybrid Architecture
Figure 4 provides a more detailed view of the processes comprising the Sting software architecture shown in

Fig. 2. The Planning Group consists of the Mission Mapping, Mission Planning, and Situational Awareness blocks.
Similarly, the Control Group consists of the Reactive Behaviors, Behavior Arbitration, and Vehicle Control blocks.
This section describes the operation of these blocks in detail and outlines their functionality with respect to the key
software and architectural challenges associated with the Urban Challenge.

A. Primitive and Integrated Perception
In order for the vehicle to estimate its own state as well as relevant environmental conditions, sensing and

estimation are needed at different levels of abstraction, frequency, and fidelity. The primitive perception part of the
software architecture collects and processes single scans/images/measurements from individual sensory sources. In
order to arrive at a comprehensive list of perception primitives, Team Sting relied on the mission scenarios to be
expected in the Urban Challenge. In particular, as safety is going to be a critically important issue, static and dynamic
obstacle detection are needed as well as scan matching algorithms for obstacle classification. The dynamic obstacle
detection is necessary also from a traffic management point-of-view. Moreover, as the vehicle will be operating in
environments in which GPS signals may or may not be readily available, an integrated GPS/IMU primitive is needed
in combination with a vision-based method for local pose estimation, i.e., visual odometry. Finally, lane and stop
line tracking capabilities will also be needed in order to place the vehicle correctly in its local environment. Note that
these primitives are not providing all of the perceptual skills needed, but the remaining, more complex perception
tasks will be handled at the integrated perception level.

To summarize, the derived set of required primitive perception capabilities are:
• Static Obstacle Detection
• Laser Scan Matching
• Dynamic Obstacle Detection
• GPS/IMU Integration
• Stereo Obstacle Detection

1051

WOODEN ET AL.

Fig. 4 Software processes used within the Sting software architecture and their relationship to the conceptual
architecture presented previously. Smaller boxes represent divisions of labor between software processes (e.g., Static
Obstacle Detection). Larger boxes represent divisions of labor within the conceptual architecture (e.g., Primitive
Perception).

• Lane and Stop Line Tracking
• Visual Odometry
The Integrated Perception functional group deals with sensor fusion, in which the data from the primitive perception

group is used in an integrated fashion to achieve higher-level perceptual tasks. These tasks are Pose Estimation,
Unmarked Road Detection, and Obstacle Tracking and Local Mapping. Two of the key problems associated with the
Urban Challenge are driving on a road network without detailed, high accuracy information about the road location,
and detecting and tracking other moving entities in the world.

B. Planning and Control
Planning and Control tasks span a number of processes in our software architecture, due to its multilayered hybrid

continuous/discrete control strategy. Figure 5 shows the structure of these processes. At the top of this hierarchical
structure is the Mission Level Mapping block. At the beginning of a mission, a map is produced that consists of a
graph structure based on the provided RNDF (Route Network Definition File). As the mission progresses, this graph
structure is augmented with information about the routes it represents. Experiences of traffic congestion, dangerous
obstacles, and impassible lanes are noted in the graph for future reference.

The map produced by the Mission Level Mapping block is passed on to the Mission Level Planning block. This
block incorporates the MDF (Mission Data File) and plans a route through the graph-based map to achieve the
specified checkpoints. Information stored in the map is used to weight edges of the graph, allowing the planner
to find a route that optimizes the expected time-to-complete, rather than simply distance. The plan is passed on
to the Reactive Behaviors block. A representation of the robot’s current task (e.g., PARK, UNPARK, DRIVE TO
CHECKPOINT) is passed on to the Situational Awareness block.

The Situational Awareness block implements a nested hybrid automaton (NHA), which is driven by the robot’s
current task and perception. The NHA implements an a priori representation of the structure of the robot’s environment

1052

WOODEN ET AL.

Fig. 5 A detailed view of the planning and control architecture, presented as part of the full architecture. Arrows
indicating information flow are labeled with the type of information communicated.

and task. The nested structure allows for asynchronous transitions at different levels of functionality. Each state in the
NHA maps, in a many-to-one fashion, to actions such as FOLLOW-LANE, DRIVE-TO-POINT, and STAND-STILL.
Selected actions are passed on to the Behavior Arbitration block.

The Behavior Arbitration block maps an action to a set of weights (which may be zero) which is applied to the
output of the behaviors provided by the Reactive Behavior block. Each behavior provides a set of votes over discrete
values of curvature within the vehicle’s drive capabilities, and provides a maximum allowable velocity for each
evaluated curvature. The Behavior Arbitration block chooses a commanded steering angle according to the input
provided by the behaviors and their respective weights, and a commanded velocity according to the minimum of the
maximum allowable velocities provided by the behaviors for the selected curvature. This commanded curvature and
velocity is passed on to the Vehicle Control block, which runs in a tight loop, controlling the actuation of the vehicle
to achieve the commanded set points.

C. Atypical and Unexpected Situations
Within the Team Sting planning and control architecture, atypical and unexpected events and situations are

addressed in two different ways. First, the transitions between states at a given level of the nested hybrid automaton
are asynchronous with respect to the state/transitions of lower levels. This reduces the possibility for deadlock.
Moreover, by using the hybrid automaton structure, existing and well known tools for analyzing the design (e.g.,
assessing the reachability of bad states, finding the possibility of deadlock) are readily available. By dividing the
complexity of the larger Situational Awareness problem into separable components—the various high-level modes
described below—the standard software principles of modularity and encapsulation are employed. This planning
architecture thus lends itself to quickly determining the fault in the existing design as well as allowing for a revision
of that component with minimal impact on other components.

The second major way for handling unexpected situations comes from the use of a behavior-based arbitration
mechanism based on the DAMN architecture,4 as shown at the Arbitration Level in Fig. 5. A number of active
behaviors express appropriate commands for their respective interests (such as avoiding obstacles or following the
lane) by voting for or against values in a set of steering angles. Because each behavior can express multiple preferences

1053

WOODEN ET AL.

across the set of steering angles, the behavior arbiter is less likely to arrive at a local minima or an oscillatory state.
For example, a behavior dedicated to avoiding obstacles can express that turning either left or right is appropriate for
avoiding an obstacle in front of the vehicle, and let the arbiter evaluate the other behaviors before deciding to turn
left or right.8

IV. Nested Hybrid Automata
A hybrid automaton is a model that captures both the continuous and the discrete aspects of a dynamic system.

In particular, a continuous state (typically the position and velocities of the car) evolves concurrently with a discrete
state (the current mode of operation), and we follow the standard definition of a hybrid automaton3 as a tuple
HA = (Q, X, E, U, f, G, R, x0, q0), where

• Q - the set of discrete states
• X - the continuous state space
• E - the set of events that can trigger transitions between different discrete states
• U - the input space
• f : Q × X × U → TX - encodes the evolution of the continuous state x as a mapping onto the tangent space

TX as dx/dt = f (q, x, u)

• G: Q × Q × X × (E ∪ {ε}) → {0, 1} - gives the guard conditions that triggers transitions between discrete
states. In particular, a transition occurs between q to q ′ if the continuous state is x, the external event is e ∈ E

or possible the “empty event” ε (no event happened) if G(q, q ′, x, e) = 1
• R: Q × Q × X × E → X - encodes the reset condition, in that the continuous state is reset to R(q, q ′, x, e)

when the system transitions from q to q ′ at continuous state x under event e

• q0 - initial discrete state
• x0 - initial continuous state
An example of this is seen in Fig. 6. In the figure, the discrete state starts out at q0 and the continuous state

evolves from x0 according to dx/dt = f (q0, x, u) until time τ . At that time, the continuous state is at x(τ−) and
event e happens. The guard condition G(q0, q

′, x(τ−), e) becomes 1 and the discrete state transitions from q0 to q ′.
The continuous state is reset to x(τ+) = R(q0, q

′, x(τ−), e), from which it evolves as dx/dt = f (q ′, x, u). Different
definitions of such hybrid dynamics have been given, but they all share these basic building blocks in terms of
continuous and discrete dynamics, guards, and resets.

The modular architecture proposed in this paper can certainly be cast as a hybrid automaton, albeit an overly
complex one. Instead, we have designed a Nested Hybrid Automaton (NHA) that operates at different levels of
abstraction.

Fig. 6 Evolution of a hybrid automaton.

1054

WOODEN ET AL.

At the highest level is HA0, composed of the operator assigned states
• operator-run
• operator-pause
• operator-stand-by
The only non-trivial of these states is operator-run that corresponds to the operator/user putting the vehicle in

an autonomous run-mode. Formally, we define the top level of a NHA as a standard hybrid automaton HA0 =
(Q0, X0, E0, U 0, f 0, G0, R0, x0

0 , q0
0), where the superscript 0 denotes level 0. The way in which the nesting works

is that each discrete state at level k − 1 in the hierarchy induces its own hybrid automaton at level k, as

HAk(q
k−1) = (Qk(qk−1), Xk(qk−1), Ek(qk−1), Uk(qk−1), f k(qk−1), Gk(qk−1), Rk(qk−1), xk

0 (qk−1), qk
0 (qk−1)),

k = 1, 2, . . .

The interpretation here is that the hybrid automaton evolves as a regular automaton at each level. However, as
a transition occurs higher up in the hierarchy, a new automaton is instantiated at the lower level, initiated at its
corresponding initial condition. Moreover, events at higher levels can be triggered by transitions occurring at lower
levels.

For instance, as seen in Fig. 3, the hybrid automaton HA1(operator-run) that corresponds to the operator-run
mode at level 0 has the discrete states

• follow-lanes
• handle-intersection
• overtake-static-obstacle
• execute-u-turn
• park
• unpark
Each of these nodes in turn contains its own hybrid automaton. The follow-lanes mode is a hybrid automaton

HA2(f ollow-lanes) whose discrete states correspond directly to an action in the sense that they define an arbiter
selection. In other words, no lower automata are defined here.

As an example of a discrete state that corresponds to a further nested structure is the handle-intersection mode in
that HA3(handle-intersection) consists of the following discrete states

• approach-intersection
• establish-precedence
• wait-for-precedence
• wait-for-oncoming-traffic
• traverse-intersection

If one wants to dig even deeper, HA4(traverse-intersection) in turn consists of the following discrete states
• go
• resest-lane-tracker
• follow-points
• request-lane-tracker-lane-change
• follow-lanes-in-intersection

Rather than enumerate all of these, we show, in Fig. 7, a screen shot of the different modes engaged.

V. Testing
A. Testing Methodology

Due to the complexity and integrated nature of the system, it is vitally important that a testing strategy is devised
that allows the designers to test different aspects of the system, the validity of design modifications and additions,
as well as the entire, integrated system. In order to accommodate these requirements, Team Sting’s testing strategy
is based on a combination of carefully engineered unit tests, integrated mission and scenario-level tests, open-loop
tests in which no autonomous control of the vehicle is allowed, and simulated tests in synthetic environments.

1055

WOODEN ET AL.

Fig. 7 Screen shot from the execution of the Sting Racing software architecture, involving the full functionality
needed to cover the requirements for the Urban Challenge.

Unit Testing
Unit tests are tests designed to capture a targeted, isolated part of the system. Such tests have been conducted

extensively at the early stages of development by Team Sting and they are important for capturing the basic behavior
of the system from both sensing, actuation, and planning points-of-view.

Integrated System Testing
One aspect of the Urban Challenge that sets it apart from previous Grand Challenges is the fact the system is forced

to switch between many different modes of operation in response to environmental conditions. The high-level modes
of operation (Follow Lanes, Overtake Static Obstacle, U-Turn, Handle Intersection, Park, and Unpark) identified by
Team Sting as critical to a successful completion of the race. These high-level modes of operation must be tested in
an integrated fashion, i.e. with all low-level functionality engaged, and all transitions enabled. That is, unit tests are
used to test individual perceptual and behavioral components while integrated tests are those that test the situational
awareness modes that depend on these lower-level components. The hierarchical layering of the software system
lends itself to translation into testing strategies at different levels of abstraction and integration.

Open Loop Testing in Real Urban Environments
As safety is a key issue that must be addressed when testing the system, Team Sting is conducting so-called Open

Loop Tests, in which the vehicle is deployed in an actual, urban environment with the software system running.
The only difference is that the proposed control signals are not allowed to actually control the vehicle. Instead
the vehicle is controlled by a human driver. This mode of operation has proved to be very useful for evaluating
the perception modules in truly complex environments. Moreover, rough, qualitative estimates of the validity of the
proposed control signals have been obtained in this manner. In the future, Team Sting will continue to employ this

1056

WOODEN ET AL.

strategy in combination with a formal assessment of the proposed control signals as compared to that of the behavior
of a human driver.

B. Experimental Results
Some examples are given in the following figures (Figs. 8–10) of Sting Racing’s entry to the DARPA Urban

Challenge.

Fig. 8 The figure shows the operation of the Sting Racing vehicle during an overtake maneuver in which the nested
hybrid automaton is going through a number of modes, including slowing down to the car ahead, changing lanes,
and overtaking.

Fig. 9 An example is given in which the vehicle is executing a parking maneuver.

Fig. 10 An intersection is traversed by first establishing the correct precedence and then waiting for precedence, as
part of the traverse intersection mode of operation.

1057

WOODEN ET AL.

VI. Conclusion
In this paper, we discuss the modular software and control architecture employed by Sting Racing, the joint Georgia

Tech, SAIC entry into the DARPA Urban Challenge. In particular, we discuss methods for switching between different
modes of operation by employing a nested hybrid automata formalism. We discuss how to map the requirements of
the Urban Challenge onto this formalism, and give some preliminary, experimental results showcasing the operation
of the software system.

References
1Multiple authors, “Special Issue on the DARPA Grand Challenge 2005 (Part 1),” Journal of Field Robotics, Vol. 23, No. 8,

2006.
2Multiple authors, “Special Issue on the DARPA Grand Challenge 2005 (Part 2),” Journal of Field Robotics, Vol. 23, No. 8,

2006.
3Henzinger, T. A., “The theory of Hybrid Automata,” 11th Annual Symposium on Logic in Computer Science (LICS), IEEE

Computer Society Press, 1996, pp. 278–292.
4Rosenblatt, J. K., “DAMN: a distributed architecture for mobile navigation,” Journal of Experimental & Theoretical Artificial

Intelligence, Vol. 9, No. 2, 1997, pp. 339–360.
5Lyons, D. M., and Arbib, M. A., “A Formal Model of Computation for Sensory-Based Robotics,” IEEE Journal of Robotics

and Automation, Vol. 5, No. 3, 1989, pp. 280–293.
6Kosecka, J., and Bajcsy, R., “Discrete Event Systems for Autonomous Mobile Agents,” Journal of Robotics and Autonomous

Systems, Vol. 12, 1994, pp. 187–198.
doi: 10.1016/0921-8890(94)90025-6

7Arkin, R. C., and MacKenzie, D., “Temporal Coordination of Perceptual Algorithms for Mobile Robot,” IEEE Transactions
on Robotics and Automation, Vol. 10, No. 3, 1994.

8Sun, J., Mehta, T., Wooden, D., Powers, M., Regh, J., Balch, T., and Egerstedt, M., “Learning from Examples in Unstructured,
Outdoor Environments,” Journal of Field Robotics, Vol. 23, No. 11/12, 2006, pp. 1019–1036.

Christopher Rouff
Associate Editor

1058

